
Hochdruck-Zahnradpumpen KP 1

Aufbau

- 1 Gehäuse
- 2 Getriebe
- 3 Antriebswellenende
- 4 Flanschdeckel
- 5 Abschlussdeckel
- 6 Lagerbrille mit Spezial-Gleitlagern
- 7 Radial-Wellendichtring
- 8 Abdichtung der Druckfelder für Axial-Spielausgleich
- 9 Gehäuseabdichtung

Funktion

Nach ihrem Aufbau – das Konstruktionsprinzip wird durch die Schnittbilddarstellung erläutert – gehört die KRACHT-Außenzahnradpumpe KP1 zum Typ der sogenannten Brillenpumpen.

In einem Aluminiumgehäuse aus hochfester Strangpresslegierung, das seitlich durch den Abschlussbzw. Flanschdeckel (aus Guss) begrenzt wird, befinden sich die wesentlichen Funktionselemente, Getriebe und Lagerbrillen.

Das Getriebe aus Einsatzstahl mit Oberflächenhärtung besteht aus dem Antriebswellenrad und dem Bolzenrad.

Höchste Fertigungsqualität wird durch Schleifen der Zahnflanken gewährleistet. Die Wellenzapfen werden feinstgeschliffen. Auf Grund der hohen Zähnezahl (z = 13) und der speziellen Zahnform wird eine wesentliche Reduzierung der bauartbedingten Volumenstromschwankung und der damit verbundenen Druckpulsation erzielt.

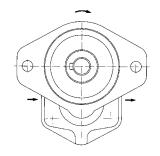
Die beidseitig des Getriebes angeordneten Lagerbrillen tragen in hochbelastbaren Mehrstoffgleitlagern die Wellenzapfen und die Dichtungselemente zur Abdichtung der Druckfelder für den Axialspielausgleich.

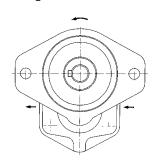
Auf Wunsch können die Pumpen mit einem direkt aufflanschbaren Druckbegrenzungsventil DBD... oder mit anstelle des Abschlussdeckels aufgebauten Sonderventilen geliefert werden.

Mehrfach-Pumpenkombinationen sind möglich.

Hinweise

1. Äußere Kräfte


Von außen am Antriebswellenende angreifende Kräfte beeinflussen die Funktion der Lagerbrillen. Radiale Kräfte können u.U. je nach Größe und Angriffsrichtung aufgenommen werden. Axiale Kräfte sind nicht zulässig. Zur Aufnahme äußerer Kräfte sind die Pumpenausführungen mit Vorsatzlager einzusetzen.


2. Drehrichtung

Bezüglich der Drehrichtung gilt – bei Blick auf das Antriebswellenende – folgende Festlegung:

Welle rechtsdrehend: Förderrichtung von links nach rechts.

Welle linksdrehend: Förderrichtung von rechts nach links.

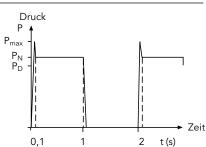
Werkstoffe

Gehäuse	Aluminium
Lagerung	Brille mit Mehrstoff-Gleitlagern
Wellen und Zahnräder	oberflächengehärteter und geschliffener Einsatzstahl nach DIN 17210
Dichtungen	NBR Radialwellendichtring ϑ ≤ 90°C (PU-Dichtung für Druckfeld)
	FKM Radialwellendichtring ϑ ≤ 100°C (PU-Dichtung für Druckfeld)

Kenngrößen

Befestigungsart		Flansch- oder Fußbefestigung
Leitungsanschluss		Flansch-Verschraubung, Gewindeanschluss auf Anfrage
Drehrichtung		rechts oder links
Einbaulage		beliebig
Umgebungstemperatur	$artheta_{\sf u \; min}$ $artheta_{\sf u \; max}$	= - 20 °C = 60 °C
Betriebsdruck Saugseite	P _{e min}	= -0,4 bar (Unterdruck) = 2 bar
Betriebsdruck kurzzeitig	p _{e max}	= 5 bar
Betriebsdruck Druckseite	p _{e max}	siehe technische Daten
Druckmitteltemperatur	$\vartheta_{\sf m\ max}$ $\vartheta_{\sf m\ max}$	90°C für NBR Radialwellendichtring 100°C für FKM Radialwellendichtring
Viskosität	$ u_{min} $	= $10 \text{ mm}^2/\text{s}$ = $600 \text{ mm}^2/\text{s}$
Empfohlene Ölsauberkeit		Klasse 19/16 nach ISO/DIS 4406
Empfohlene Filterung		Filter mit Filtrationsquotient $\beta_{25} \ge 75$ für 300 bar $\beta_{40} \ge 75$ für 100 bar
Empfohlener Viskositätsbereich	ν	= 30 45 mm ² /s
Förderstrom		siehe Tabelle Seite 6
Antriebsleistung		siehe Tabelle Seite 6
Druckflüssigkeiten		Mineralöl nach DIN 51524/25 Motorenöl nach DIN 51511 Bio-Öle der Gruppe "HEES" können bis 70°C und bei ca. 20% reduziertem Höchstdruck eingesetzt werden (bitte anfragen)

2



Technische Daten

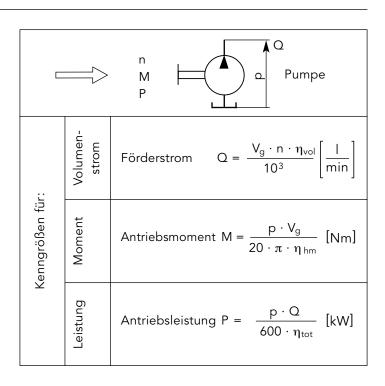
Förder- volumen Nenn- größe	geom. Förder- volumen	Höchst- druck	Nenn- druck	Dauer- druck		ax. nzahl	Massen- trägheits- moment x 10 ⁻⁶		Mindestdrehzahl				
	V_g	p_{max}	p _N	PD	n _n	nax	J	bei p = bar					
	cm ³ /U	bar	bar	bar	1/r	min	kg m²	1/min					
					NBR	FKM		100	120	150	180	200	250
3	3	300	280	250	3000	4000	23,3	600	700	900	1200	1300	1400
4	4	300	280	250	3000	4000	28,4	600	700	900	1200	1300	1400
5,5	5,45	300	280	250	3000	4000	35,7	500	700	900	1000	1200	1400
6,3	6,28	300	280	250	3000	4000	39,9	500	700	900	1000	1200	1400
8	7,9	300	280	250	3000	4000	51,1	500	700	900	1000	1100	1400
11	10,9	300	280	250	3000	3500	62,9	500	700	900	1000	1100	1200
14	13,85	300	280	250	3000	3000	77,7	500	700	800	900	1000	1100
16	15,9	300	280	250	3000	3000	87,7	500	600	700	800	1000	1000
19	18,8	250	230	200	2800	2800	102,5	500	600	700	800	1000	_
22	22,3	200	180	150	2500	2500	119,6	500	600	700	800	-	_

Höchstdruck = Druckspitze Nenndruck pN < 6 s = 50 % ED siehe Zeit-/Druck-Diagramm max. Schalthäufigkeit: 30 / min Druckangaben gelten für $v \ge 30$ mm²/s

Zeit-/Druck-Diagramm

Berechnungsformeln für Hydropumpen

Kenngrößen, Formelzeichen, Einheiten


IXCI	ingroben, romineizeienen, Emin	SILCII	
1.	Förder-/Schluckstrom	Q	l/min
2.	geom. Förder-/Schluckvolumen	V_g	cm ³ /U
3.	Druck	р	bar
4.	Drehzahl	n	1/min
5.	Moment	M	Nm
6.	Leistung	Р	kW
7.	Gesamtwirkungsgrad	η_{tot}	_
8.	volumetrischer Wirkungsgrad	η_{vol}	_
9.	hydr./mech. Wirkungsgrad	η_{hm}	_
10.	Strömungsgeschwindigkeit	V	m/s
11.	Leitungsdurchmesser	d	mm

Allgemeines

$$\begin{split} &Q_{th} = V_g \cdot n, \ \eta_{tot} = \eta_{vol} \cdot \eta_{hm}, \\ &M = 9549 \cdot \frac{P}{n} \cdot \ v = 21,22 \ \frac{Q}{d_2} \end{split}$$

Richtwerte für KRACHT-Produkte im Nenn-Betriebspunkt

$$\begin{array}{c|cccc} & \eta_{tot} & \eta_{vol} \\ \hline KP & \approx 0.90 & \approx 0.90 \end{array}$$

Förderstrom und erforderliche Antriebsleistung

		4 4 5 0	4 / •
Förderstrom	bein =	1450	1/min

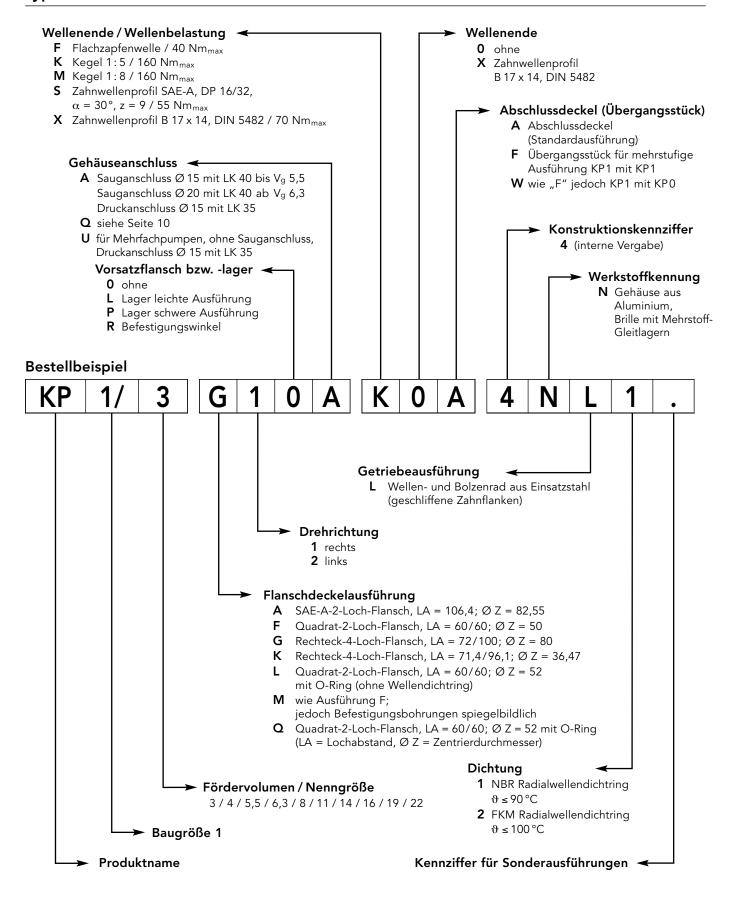
	Förderstrom Q in l/min bei 34 mm²/s Druck p in bar											
Nenngröße	20	60	100	140	180	220	260					
3	4,2	4,1	4,1	4,0	4,0	3,9	3,9					
5,5	7,7	7,7	7,6	7,5	7,4	7,4	7,3					
8	11,2	11,2	11,1	11,0	10,9	10,8	10,7					
11	15,4	15,3	15,2	15,1	15,0	14,8	14,7					
14	19,6	19,5	19,4	19,3	19,2	19,0	18,9					
16	22,5	22,4	22,3	22,2	22,1	22,0	21,9					
19	26,7	26,6	26,5	26,4	26,3	26,2	_					
22	31,6	31,5	31,4	31,4	31,3	_	_					

Erforderliche Antriebsleistung bei n = 1450 1/min

				Druck p in bar			
Nenngröße	20	60	100	140	180	220	260
3	0,26	0,59	0,93	1,26	1,59	1,93	2,26
5,5	0,36	0,91	1,45	1,99	2,53	3,07	3,61
8	0,49	1,28	2,07	2,86	3,65	4,44	5,23
11	0,64	1,72	2,81	3,89	4,97	6,06	7,14
14	0,80	2,22	3,63	5,05	6,46	7,88	9,29
16	0,89	2,49	4,08	5,67	7,26	8,85	10,45
19	1,02	2,87	4,72	6,57	8,42	10,27	_
22	1,20	3,39	5,58	7,76	9,95	<u>—</u>	_

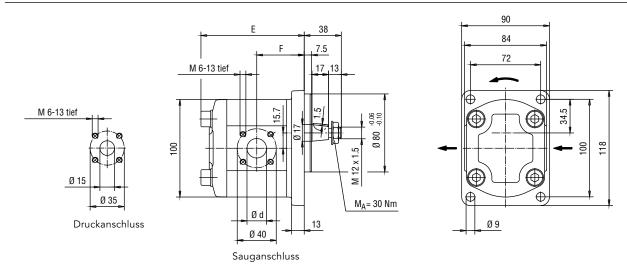
Förderstrom bei n = 950 1/min

	Förderstrom Q in l/min bei 34 mm²/s Druck p in bar										
Nenngröße	20	60	100	140	180	220	260				
3	2,6	2,6	2,5	2,4	_	_	_				
5,5	4,9	4,8	4,6	4,5	4,4	_	_				
8	7,1	7,0	6,9	6,8	6,7	_	_				
11	9,8	9,7	9,6	9,5	9,4	_	_				
14	12,5	12,4	12,3	12,2	12,0	_	_				
16	14,3	14,2	14,1	13,9	13,8	_	_				
19	17,0	16,9	16,8	16,7	16,6	_	_				
22	20,1	20,0	20,0	19,9	19,8	<u> </u>	_				


Erforderliche Antriebsleistung bei n = 950 1/min

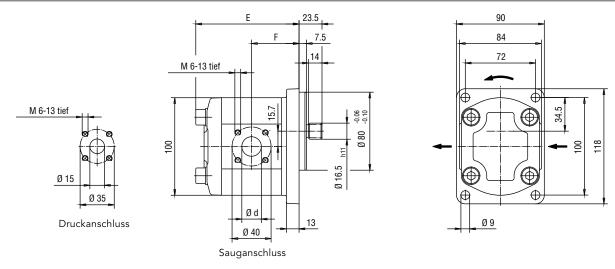
Nenngröße 20 60 100 140 180 220 260 3 0,18 0,39 0,60 0,82 — — — 5,5 0,25 0,60 0,96 1,32 1,68 — — 8 0,33 0,85 1,37 1,89 2,40 — — 11 0,42 1,13 1,84 2,55 3,26 — — 14 0,52 1,41 2,31 3,20 4,09 — — 16 0,58 1,61 2,64 3,66 4,69 — — 19 0,68 1,89 3,11 4,33 5,55 — —					Druck p in bar			
5,5 0,25 0,60 0,96 1,32 1,68 — — 8 0,33 0,85 1,37 1,89 2,40 — — 11 0,42 1,13 1,84 2,55 3,26 — — 14 0,52 1,41 2,31 3,20 4,09 — — 16 0,58 1,61 2,64 3,66 4,69 — —	Nenngröße	20	60	100	140	180	220	260
8 0,33 0,85 1,37 1,89 2,40 — — 11 0,42 1,13 1,84 2,55 3,26 — — 14 0,52 1,41 2,31 3,20 4,09 — — 16 0,58 1,61 2,64 3,66 4,69 — —	3	0,18	0,39	0,60	0,82	_	_	_
11 0,42 1,13 1,84 2,55 3,26 — — 14 0,52 1,41 2,31 3,20 4,09 — — 16 0,58 1,61 2,64 3,66 4,69 — —	5,5	0,25	0,60	0,96	1,32	1,68	_	_
14 0,52 1,41 2,31 3,20 4,09 — — 16 0,58 1,61 2,64 3,66 4,69 — —	8	0,33	0,85	1,37	1,89	2,40	_	_
16 0,58 1,61 2,64 3,66 4,69 — —	11	0,42	1,13	1,84	2,55	3,26	_	_
	14	0,52	1,41	2,31	3,20	4,09	_	_
19 0,68 1,89 3,11 4,33 5,55 — —	16	0,58	1,61	2,64	3,66	4,69	_	_
	19	0,68	1,89	3,11	4,33	5,55	_	_
22 0,78 2,21 3,64 5,07 6,50 — —	22	0,78	2,21	3,64	5,07	6,50	_	_

Ć



Typenschlüssel

Ausführung G-Flansch, konische Welle



Bestellbeispiel:

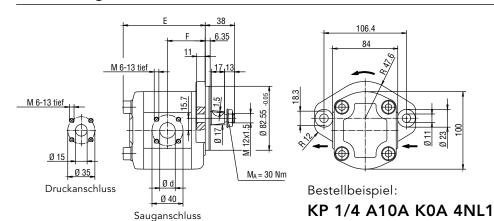
KP 1/4 G10A K0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Kegel 1:5 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federscheibe B12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

Ausführung G-Flansch, Zahnwelle

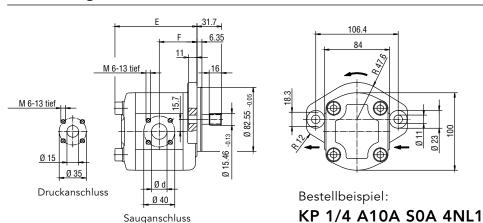
Bestellbeispiel:

KP 1/4 G10A X0A 4NL1

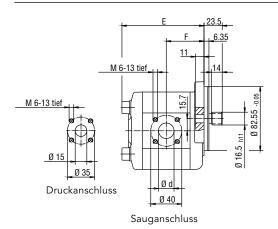

Wellenende: Zahnwellenprofil B 17 x 14 DIN 5482 jedoch Zahndicke $S_w = 3,206$

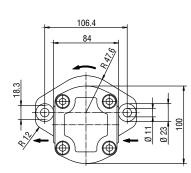
Profilverschiebung = +0.6

Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22
d	15,0	15,0	15,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E	87,5	89,2	91,7	93,1	95,9	100,9	105,9	109,3	114,3	120,1
F	39,5	40,4	41,6	42,3	43,7	46,2	48,7	50,4	52,9	55,8
Gewicht kg	2,1	2,2	2,2	2,3	2,3	2,5	2,6	2,8	2,9	3,1


Ausführung SAE A-Flansch, konische Welle

Wellenende: Kegel 1:5 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federscheibe B12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

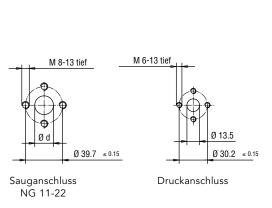

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt

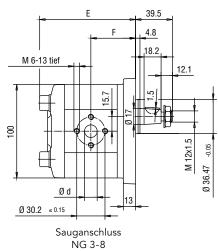

Ausführung SAE A-Flansch, SAE A-Welle

Wellenende: Zahnwellenprofil SAE-A z = 9 T, DP 16/32; $\alpha = 30^{\circ}$

Ausführung SAE A-Flansch, Zahnwelle

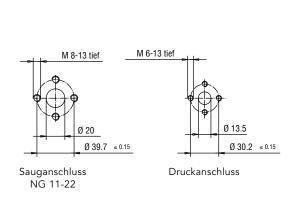
Wellenende: Zahnwellenprofil B 17 x 14 DIN 5482

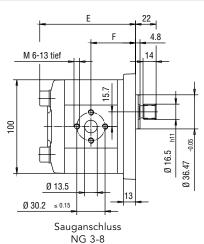

Bestellbeispiel:

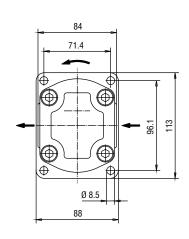

KP 1/4 A10A X0A 4NL1


Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22
d	15,0	15,0	15,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E	87,5	89,2	91,7	93,1	95,9	100,9	105,9	109,3	114,3	120,1
F	39,5	40,4	41,6	42,3	43,7	46,2	48,7	50,4	52,9	55,8
Gewicht kg	2,5	2,6	2,6	2,7	2,7	2,9	3,0	3,2	3,3	3,5

Ausführung K-Flansch, konische Welle 1:8



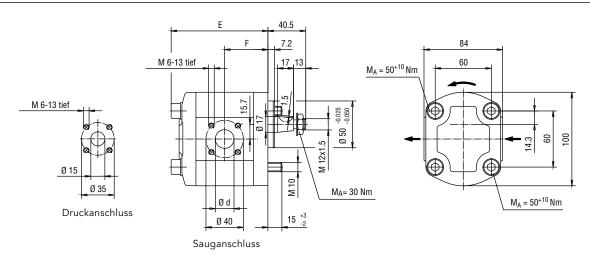

Bestellbeispiel:


KP 1/4 K10Q M0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Kegel 1:8 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federscheibe B12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

Ausführung K-Flansch, Zahnwelle

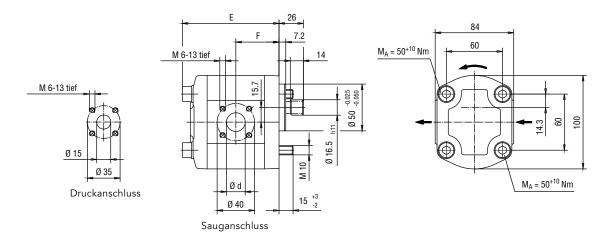
Bestellbeispiel:


KP 1/4 K10Q X0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Zahnwellenprofil B 17 x 14 DIN 5482 jedoch Zahndicke $S_w = 3,206$ Profilverschiebung = +0,6

Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22
d	13,5	13,5	13,5	13,5	13,5	20,0	20,0	20,0	20,0	20,0
E	89,0	90,7	93,2	94,6	97,4	102,4	107,4	110,8	115,8	121,6
F	41,0	41,85	43,1	43,8	45,2	47,7	50,2	51,9	54,4	57,3
Gewicht kg	2,1	2,2	2,2	2,3	2,3	2,5	2,6	2,8	2,9	3,1

Ausführung F-Flansch, konische Welle



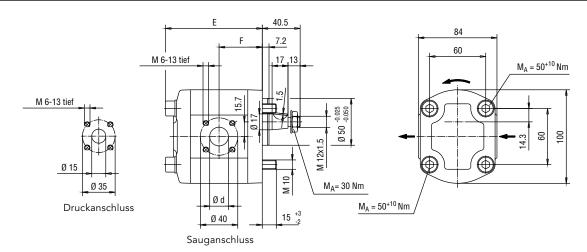
Bestellbeispiel:

KP 1/4 F10A K0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Kegel 1:5 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federscheibe B12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

Ausführung F-Flansch, Zahnwelle

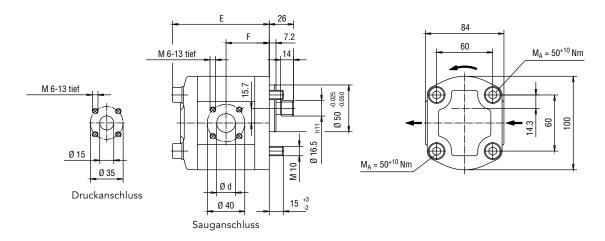
Bestellbeispiel:


KP 1/4 F10A X0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Zahnwellenprofil B 17 x 14 DIN 5482 jedoch Zahndicke $S_w = 3,206$ Profilverschiebung = +0,6

Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22	
d	15,0	15,0	15,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	
E	85,0	86,7	89,2	90,6	93,4	98,4	103,4	106,8	111,8	117,6	
F	37,0	37,9	39,1	39,8	41,2	43,7	46,2	47,9	50,4	53,3	
Gewicht kg	2,1	2,2	2,2	2,3	2,3	2,5	2,6	2,8	2,9	3,1	

Ausführung M-Flansch, konische Welle



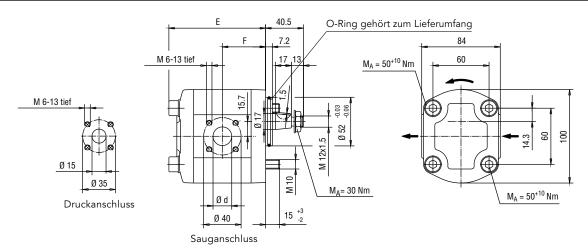
Bestellbeispiel:

KP 1/4 M10A K0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Kegel 1:5 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federscheibe B12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

Ausführung M-Flansch, Zahnwelle

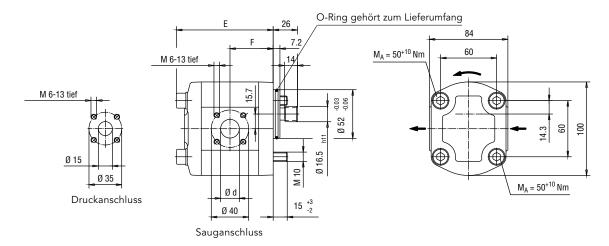
Bestellbeispiel:


KP 1/4 M10A X0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Zahnwellenprofil B 17 x 14 DIN 5482 jedoch Zahndicke S_w = 3,206 Profilverschiebung = + 0,6

Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22
d	15,0	15,0	15,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E	85,0	86,7	89,2	90,6	93,4	98,4	103,4	106,8	111,8	117,6
F	37,0	37,9	39,1	39,8	41,2	43,7	46,2	47,9	50,4	53,3
Gewicht kg	2,1	2,2	2,2	2,3	2,3	2,5	2,6	2,8	2,9	3,1

Ausführung Q-Flansch, konische Welle



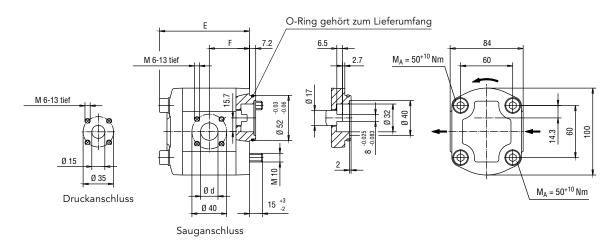
Bestellbeispiel:

KP 1/4 Q10A K0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Kegel 1:5 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federscheibe B12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

Ausführung Q-Flansch, Zahnwelle

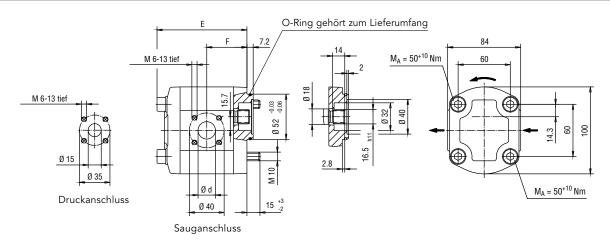
Bestellbeispiel:


KP 1/4 Q10A X0A 4NL1

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Zahnwellenprofil B 17 x 14 DIN 5482 jedoch Zahndicke $S_w = 3,206$ Profilverschiebung = +0,6

Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22
d	15,0	15,0	15,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E	85,0	86,7	89,2	90,6	93,4	98,4	103,4	106,8	111,8	117,6
F	37,0	37,9	39,1	39,8	41,2	43,7	46,2	47,9	50,4	53,3
Gewicht kg	2,1	2,2	2,2	2,3	2,3	2,5	2,6	2,8	2,9	3,1

Ausführung L-Flansch, Flachzapfenwelle



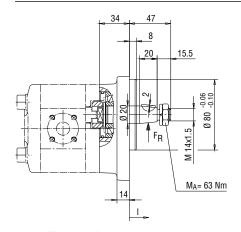
Bestellbeispiel:

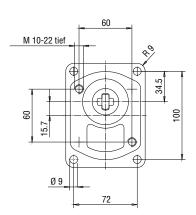
KP 1/4 L10A F0A 4NL1

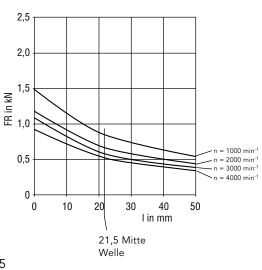
Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt

Ausführung L-Flansch, Zahnwelle

Bestellbeispiel:


KP 1/4 L10A X0A 4NL1/204

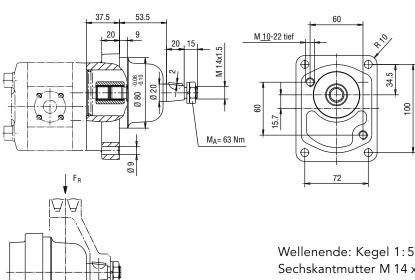

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt Wellenende: Zahnwellenprofil B 17 x 14 DIN 5482 jedoch Zahndicke $S_w = 3,206$ Profilverschiebung = +0,6


Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22
d	15,0	15,0	15,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E	85,0	86,7	89,2	90,6	93,4	98,4	103,4	106,8	111,8	117,6
F	37,0	37,9	39,1	39,8	41,2	43,7	46,2	47,9	50,4	53,3
Gewicht kg	2,1	2,2	2,2	2,3	2,3	2,5	2,6	2,8	2,9	3,1

Ausführung mit Vorsatzlager L, konische Welle

Bestellbeispiel:

KP 1/4 L1LA F0A 4NL1


Gewicht des Vorsatzlagers = 1,0 kg Vorsatzlager L, konische Welle KP 1/4 L1LA F0A 4NL1 Flachzapfenverbindung 40 Nm_{max} alternativ KP 1/4 L1LA X0A 4NL1 Zahnwellenverbindung 70 Nm_{max}

Pumpenmaße und Ausführung siehe Seite 14

Wellenende: Kegel 1:5 Sechskantmutter M 14 x 1,5 DIN EN 28675 Federring B 14 DIN 127 Scheibenfeder 4 x 6,5 DIN 6888

zulässige Radialkräfte F_R als Funktion des Stützabstandes I (für $L_h = 10.000 \text{ h}$) $F_R = f(I)$

Ausführung mit Vorsatzlager P, konische Welle

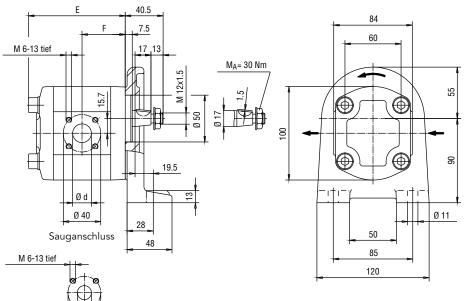
2,5 2,0 1,5 FR in kN 1,0 n = 1000 min 0,5 — n = 2000 min⁻¹ — n = 3000 min⁻¹ $n = 4000 \text{ min}^2$ 0 0 10 20 30 40 50 60 I in mm Mitte Lager 38 Mitte Welle

Sechskantmutter M 14 x 1,5 DIN EN 28675 Federring B 14 DIN 127 Scheibenfeder 4 x 6,5 DIN 6888

zulässige Radialkräfte F_R als Funktion des Stützabstandes I (für $L_h = 10.000 \text{ h}$) $F_R = f(I)$

Bestellbeispiel:

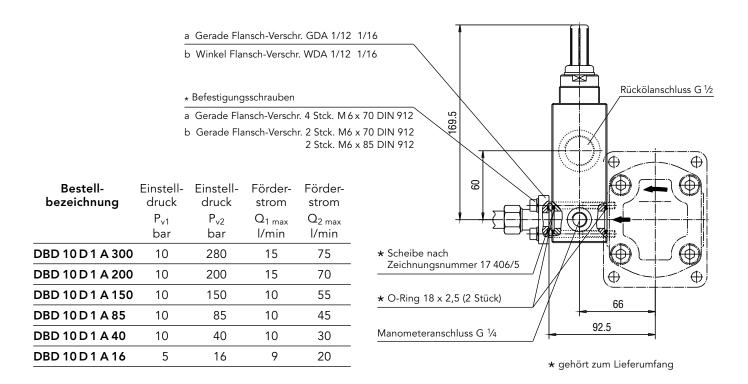
KP 1/4 Q1PA X0A 4NL1


38

63.5

Pumpenmaße und Ausführung siehe Seite 13 Gewicht des Vorsatzlagers = 3,5 kg

Ausführung mit Befestigungswinkel, konische Welle


Wellenende: Kegel 1:5 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federring B 12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

Bestellbeispiel:

KP 1/4 F1RA K0A 4NL1

8 8			-		7						
Ø 15	Fördervolumen Nenngröße	3	4	5,5	6,3	8	11	14	16	19	22
Ø 35	d	15,0	15,0	15,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Druckanschluss	E	85,0	86,7	89,2	90,6	93,4	98,4	103,4	106,8	111,8	117,6
	F	37,0	37,9	39,1	39,8	41,2	43,7	46,2	47,9	50,4	53,3
	Gewicht kg	3,7	3,8	3,8	3,9	3,9	4,1	4,2	4,4	4,5	4,7

Druckbegrenzungsventil

M 6-13 tief

M 6-13 tief

Ø 20

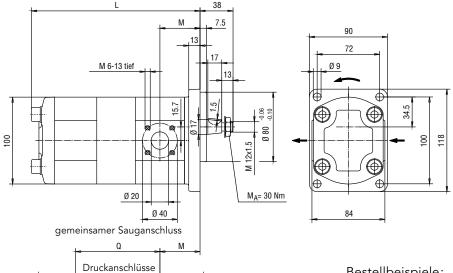
9

Ø 15

Q

M 6-13 tief

Ø 20


Sauganschlüsse

Ø 35

Ø 15

Ø 35

Tandemausführung, konische Welle

7.5

M 12x1.5

M_A= 30 Nm

Dargestellte Drehrichtung: rechts Bei Linkslauf sind Saug- und Druckanschluss entgegengesetzt

Wellenende: Kegel 1:5 Sechskantmutter M 12 x 1,5 DIN EN 28675 Federscheibe B12 DIN 137 Scheibenfeder 3 x 6,5 DIN 6888

Bestellbeispiele: KP 1/4 G10A KXF 4NL1/271 + KP 1/4 010U X0A 4NL1/271

maximale Saugmenge bei Saughöhe h = 1 m

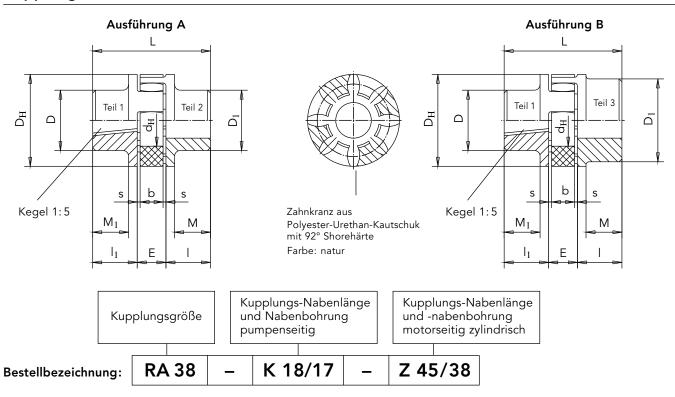
Viskosität	$v = 120 \text{ mm}^2/\text{s}$	34 mm ² /s
Q _{max} bei Rohrleitung 28 L	65 l/min	90 l/min
Q _{max} bei Rohrleitung 35 L	85 l/min	110 l/min

Belastungsgrenze für Welle:

 $(p_1 * V_1 + p_2 * V_2) \le 9000$

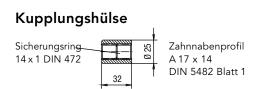
 $p_{1,2}$ = Betriebsdruck in bar $V_{1,2}$ = Fördervolumen in cm³

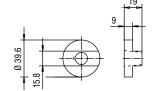
dreistufig


andere Flansche und Wellenenden möglich

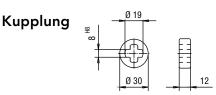
Bestellbeispiele: **KP 1/4 G10A KXF 4NL1/271 + KP 1/4 010A X0A 4NL1/271**

Nenn-			ervol./											1. S	tufe								
größe		Nenn	größe	2	22	1	19	1	6	1	4	1	1		8	6	,3	5,	5		4	;	3
				Q	L	Q	L	Q	L	Q	L	Q	L	Q	L	Q	L	Q	L	Q	L	Q	L
3	39,5		3	103,8	207,6	100,9	201,8	98,4	196,8	96,7	193,4	94,2	188,4	91,7	183,4	90,3	180,6	89,6	179,2	88,4	176,7	87,5	175,0
4	40,4		4	104,7	209,3	101,7	203,5	99,2	198,5	97,6	195,1	95,0	190,1	92,6	185,1	91,2	182,3	90,5	180,9	89,2	178,5		
5,5	41,6		5,5	105,9	212,1	103,0	206,0	100,5	201,0	98,8	197,6	96,3	192,6	93,8	187,6	92,4	184,8	91,7	183,4				
6,3	42,3	_	6,3	106,6	213,2	103,7	207,4	101,2	202,4	99,5	199,0	97,0	194,0	94,5	189,0	93,1	186,1						
8	43,7	Stufe	8	108,0	216,0	105,1	210,2	102,6	205,2	100,9	201,8	98,4	196,8	95,9	191,8								
11	46,2	2. 5	11	110,5	221,0	107,6	215,2	105,1	210,2	103,4	206,8	100,9	201,8										
14	48,7	,,	14	113,0	226,0	110,1	220,2	107,6	215,2	105,9	211,8												
16	50,4		16	114,7	229,4	111,8	223,6	109,3	218,6														
19	52,9		19	117,2	234,4	114,3	228,6							Н	inwei								edien
22	55,8		22	120,1	240,2		•	•								m	it Aus	sführ	ung 2	271 n	icht r	nögli	ch.
						•										G	etren	nte N	∕ledi∈	en au	f Anf	rage.	


Kupplungen und Zubehör

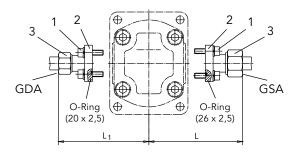

	Kupp- lungs-	Ge-	Massen- trägheits-		or- rung	Fe	ertigb	ohrun	g					Ab	messu	nge	n					Bestell- bezeichnung
	größe	WICHT	moment			min.	min.	max.	max.													Dezeicillung
	J. 2.2.2			Teil	Teil	Teil	Teil	Teil	Teil													
		kg	kgm ²	2	3	2	3	2	3	ı	I ₁	Е	S	b	L	М	M ₁	D _H	D	D ₁	dн	
	24	0,2	0,00008	-	-	9	-	24	-	30	18,5	18	2	14	66,5	24	12,5	55	40	-	27	RA 24-K18/17-Z 30/
Aus- führung	28	0,35	0,0002	-	-	10	-	28	-	35	18,5	20	2,5	15	73,5	28	11,5	65	48	-	30	RA 28-K18/17-Z 35/
A	38	0,75	0,0007	-	-	12	Ī	38	ı	45	18,5	24	3	18	87,5	37	10,5	80	66	-	38	RA 38-K18/17-Z 45/
	42	1,15	0,0014	25	-	28	ı	42	ı	50	18,5	26	3	20	94,5	40	8,5	95	75	-	46	RA 42-K18/17-Z 50/
	24/28	0,22	0,0001	-	20	-	22	-	28	30	18,5	18	2	14	66,5	24	12,5	55	40	56	27	RA 24/28-K18/17-Z 30/
Aus-	28/38	0,42	0,0003	-	23	-	28	-	38	35	18,5	20	2,5	15	73,5	28	11,5	65	48	67	30	RA 28/38-K18/17-Z 35/
führung	38/45	0,82	0,0008	-	36	į	38	ı	45	45	18,5	24	3	18	87,5	37	10,5	80	66	77	38	RA 38/45-K18/17-Z 45/
В	38/45	2,5	0,0020	-	-	İ	38	ı	45	70	18,5	24	3	18	112,5	62	10,5	80	66	78	38	RG 38/45-K18/17-Z 70/
	42/55	1,29	0,0018	-	25	-	42	_	55	50	18,5	26	3	20	94,5	40	8,5	95	75	94	46	RG 42/55-K18/17-Z 50/

Betriebstemperatur: -40 °C bis +90 °C (kurzzeitige Temperaturen bis +120 °C sind zulässig) Gewichte und Massenträgheitsmomente beziehen sich auf max. Fertigbohrung ohne Nut. Fertigbohrung nach ISO – Passung H7; Passfedernuten nach DIN 6885 Blatt 1 RA: Nabenwerkstoff Al


RG: Nabenwerkstoff Teil 2 bzw. 3 GG

Kupplungshülse Gr. 1 Teilenummer: B.0079020001

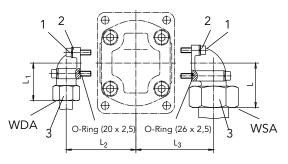
Kupplung KP1 K-Welle Teilenummer: E.0187220001



Kupplung KP1L

Teilenummer: E.0104040001

Gerade Flansch-Verschraubung



- 1 Zylinderschraube (DIN 912 8.8)
- 2 Federring (A6 DIN 127)
- 3 Überwurfmutter mit Keilring (SW)

Saugseite Rohr-Außen-Ø	Bestell- bezeichnung	Förderstrom Q in I/min	Abmes	ssungen	Zylinderschrauben	Gewicht
mm	g	bei 34 mm²/s	L	SW		kg
22	GSA 1/22	45	86	36	4 x M 6 x 22	0,23
18	GSA 1/18	30	86	32	4 x M 6 x 22	0,22
15	GSA 1/15	12	85	27	4 x M 6 x 22	0,19

Druckseite Rohr-Außen-Ø	Bestell- bezeichnung	Nenndruck P _N in bar	Abmes	ssungen	Zylinderschrauben	Gewicht
mm	bezeichhung	I N III Dai	L ₁	SW		kg
16	GDA 1/16	315	82	30	4 x M 6 x 22	0,18
15	GDA 1/15	250	81	27	4 x M 6 x 22	0,17
12	GDA 1/12	315	81	22	4 x M 6 x 22	0,16

Winkel-Flansch-Verschraubung

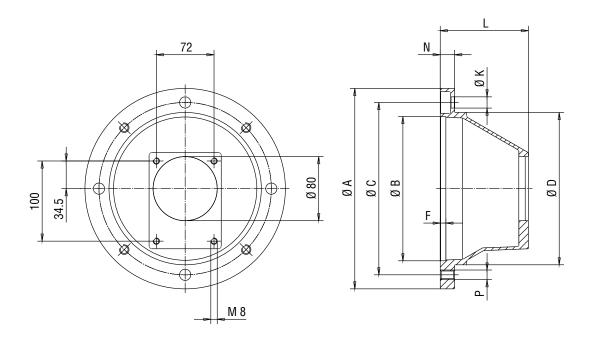
Bestellbeispiel eines kompletten Anschlusses

für die Saugseite

(gerade Verschraubung): GSA 1/22

für die Druckseite

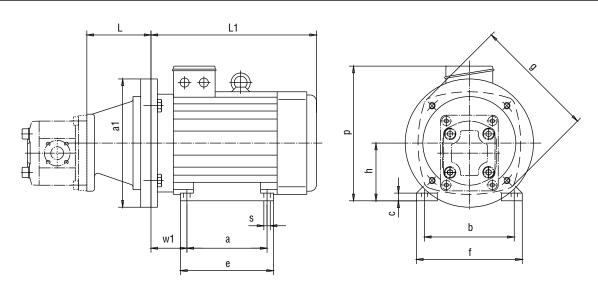
(Winkel-Verschraubung): WDA 1/20


Zylinderschrauben nach DIN 912, Federringe und O-Ringe gehören zum Lieferumfang.

Saugseite Rohr-Außen-Ø	Bestell- bezeichnung	Förderstrom Q in l/min	Ab	messun	gen	Zylinderschrauben	Gewicht
mm	Dezeichnung	bei 34 mm²/s	L	L_3	SW		kg
35	WSA 1/35	65	52	74	50	2 x M 6 x 60 2 x M 6 x 22	0,55
28	WSA 1/28	45	49	70	41	2 x M6 x 50 2 x M6 x 20	0,38
22	WSA 1/22	25	47	64,5	36	4 × M 6 × 22	0,27
18	WSA 1/18	18	47	64,5	32	4 × M 6 × 22	0,25
15	WSA 1/15	12	46	64,5	27	4 x M 6 x 22	0,23

Druckseite Rohr-Außen-Ø	Bestell- bezeichnung	Nenndruck P _N in bar	Abı	messun	gen	Zylinderschrauben	Gewicht
mm	bezeichnung	I N III Dai	L_1	L_2	SW		kg
20	WDA 1/20	315	56	67	36	2 x M 6 x 45 2 x M 6 x 22	0,40
16	WDA 1/16	315	48	62	30	2 x M 6 x 40 2 x M 6 x 22	0,28
15	WDA 1/15	250	46	58,5	27	2 x M 6 x 35 2 x M 6 x 22	0,22
12	WDA 1/12	315	47	58,5	22	2 x M 6 x 35 2 x M 6 x 22	0,20

Alu Pumpenträger für KP 1/..G..-Ausführung



Ausführung Type	Motor- Baugröße										Zwischen- flansch Gewicht	Kupplungsgröße
	E-Motor	Α	В	С	D	F	K	L	N	Р	kg	
* Z1/160/110	71	160	110	130	110	7	9	110	13	9	0,8	RS24 -K18/17-Z50/14
* Z1/200/100	80	200	130	165	145	7	11	100	16	M10	0,9	RA24 -K30/17-Z30/19
* Z1/200/100	90	200	130	165	145	7	11	100	16	M10	1,0	RA24 -K18/17-Z30/24
Z1/250/110	100/112	250	180	215	190	7	14	110	18	M12	1,5	RA24/28 - K18/17-Z30/28
Z1/300/132	132	300	230	265	234	7	14	132	20	M12	2,1	RA38 -K18/17-Z45/38
Z1/350/171	160	350	250	300	260	7	18	171	25	M16	3,1	RG38/45 - K18/17-Z70/42

Die mit einem * gekennzeichneten Zwischenflansche sind nicht für einen Behältereinbau geeignet, da der Pumpenflansch größer als der Zentrierdurchmesser des Zwischenflansches ist. Pumpenträger auf Wunsch mit Entlüftungs- bzw. Leckölbohrung.

Pumpenaggregat KP 1/.G.0A K0A 4 NL.

Bau- Leistung Drehzahl größe Motor 6-polig		Leistung Drehzahl Motor 4-polig		Pumpen- träger	Kupplung	Gewicht E-Motor kg		Pumpen- träger	
	kW	1/min	kW	1/min			6-polig	4-polig	kg
80 S	0,37	920	0,55	1400	Z1/200/100-K	RA 24-K30/17-Z30/19	11	10	0,9
80	0,55	910	0,75	1400	Z1/200/100-K	NA 24-N30/17-230/17	12	11	0,7
90 S	0,75	925	1,1	1410	Z1/200/100-K	RA 24-K18/17-Z30/24	13	13	1,0
90 L	1,1	935	1,5	1420	Z1/200/100-K	NA 24-1(10/17-230/24	17	15	1,0
100 LS	_	_	2,2	1420			_	21	
100 L	1,5	940	3	1430	Z1/250/110-K	RA 24/28-K18/17-Z30/28	20	24	1,5
112 M	2,2	945	4	1440			29	31	
1325	3	955	5,5	1445	71/200/122 K	RA 28/38-K18/17-Z35/38	36	39	2,1
132 M	4	960	7,5	1450	Z1/300/132-K	KA 20/30-K10/17-233/30	63	60	۷,۱
160 M	7,5	960	11	1450	71/250/171 K	RG 38/45-K18/17-Z70/42	76	76	3,1
160 L	11	960	15	1450	Z1/330/1/1-N	NO 30/43-N10/1/-Z/0/4Z	94	90	٥,١

Bau- größe						Maße						
	L	a ₁	а	b	c	е	g	h	L ₁	р	s	\mathbf{w}_1
80 S	100	200	100	125	5	120	156	80	244	199	10	50
80	100	200	100	125	5	120	156	80	244	199	10	50
90 S	100	200	100	140	12	158	190	90	258	210	9	56
90 L	100	200	125	140	12	158	190	90	258	210	10	56
100 LS	110	250	140	160	12	172	213	100	298	232	12	63
100 L	110	250	140	160	12	172	213	100	298	232	12	63
112 M	110	250	140	190	12	172	234	112	325	252	12	70
132S	132	300	140	216	12	187	265	132	358	283	12	89
132 M	132	300	178	216	12	218	298	132	399	303	12	89
160 M	171	350	210	254	16	306	323	160	476	341	15	108
160 L	171	350	254	254	16	306	323	160	476	341	15	108

Alle Motormaße beziehen sich auf das Motor-Fabrikat Schäfer, andere Motorenfabrikate auf Anfrage. Motor Bauform IM B 35

Notizen

Notizen

KRACHT GmbH \cdot Gewerbestraße 20 \cdot 58791 Werdohl, Germany Phone +49 2392 935 0 \cdot E-Mail info@kracht.eu \cdot Web www.kracht.eu