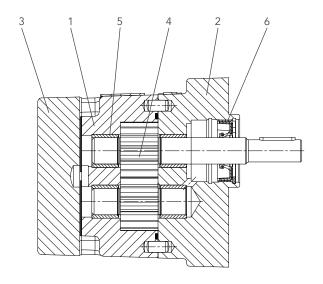


Zahnradpumpen KF 0

Inhalt


KF 0					
Allgemeines	4				
Technische Daten	5				
Förderstrom und erforderliche Antriebsleistung	6				
Typenschlüssel	7				
Abmessungen	8 - 10				
Kupplungen	11				
Pumpenträger	12				
KF 0 mit Magnetkupplung					
Allgemeines	13				
Technische Daten	14 - 15				
Typenschlüssel	16				

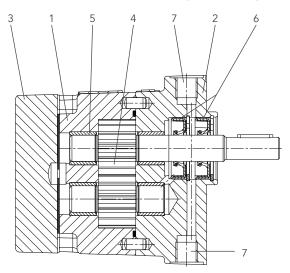
Allgemeines KF 0

Aufbau

Zahnradpumpe mit Radialwellendichtring

- 1 Gehäuse
- 2 Flanschdeckel
- 3 Abschlussdeckel
- 4 Getriebe
- 5 Lagerbuchse
- 6 Radialwellendichtring

I Beschreibung


Bei zahlreichen verfahrenstechnischen Prozessen steht das Dosieren von Flüssigkeiten im Mittelpunkt der Aufgabenstellung. PUR-Komponenten, Weichmacher, Harze, Kleber, Lacke und Farben sind einige der wichtigsten Flüssigkeiten mit einem breiten Anwendungsspektrum.

Die Genauigkeit, Gleichmäßigkeit und Reproduzierbarkeit mit der diese Flüssigkeiten verarbeitet werden können, ist mitentscheidend für die Qualität des Endproduktes.

Besonders geeignet für diese Anwendungen ist die Zahnradpumpe der Baugröße KF 0. Bei der KF 0 handelt es sich um eine Außenzahnradpumpe mit Fördervolumina von 0,5 ... 4 cm³/U.

Die Abstufung der insgesamt acht Nenngrößen erleichtert die Einstellung der gewünschten Dosierverhältnisse. Die feine Verzahnung mit hoher Zähnezahl gewährleistet einen pulsationsarmen Förderstrom. Alle

Zahnradpumpe mit Doppel-Radialwellendichtring und Gewindeanschluss für Flüssigkeitsvorlage

- 1 Gehäuse
- 2 Flanschdeckel
- 3 Abschlussdeckel
- 4 Getriebe
- 5 Lagerbuchse
- 6 Doppel-Radialwellendichtring
- 7 Gewindeanschluss für Flüssigkeitsvorlage

Getriebeteile und die Lagerbuchsen sind bereits in der Standardausführung durch eine Spezialbeschichtung gegen Verschleiß und Korrosion geschützt, so dass auch gefüllte Medien bis zu einer bestimmten Korngröße und Härte der Füllstoffe gefördert werden können. Aufgrund der Spielauslegung in Verbindung mit einer präzisen Fertigung ergeben sich für die KF 0 sehr gute volumetrische Wirkungsgrade über einen weiten Druckbereich.

Verschiedene Dichtungsvarianten wie einfacher Radialwellendichtring und Doppel-Radialwellendichtring sind entsprechend der Aufgabenstellung wählbar, wobei die letztere Variante den Betrieb mit Flüssigkeitsvorlage ermöglicht, um das Aushärten oder Kristallisieren des Fördermediums zu verhindern.

In Verbindung mit einem Durchflussmesser und der Auswerteelektronik kann die KF 0 zu einer hochgenauen Dosiereinheit erweitert werden.

Technische Daten

I Allgemeine Kenngrößen

Befestigungsart	Flansch				
Hydraulischer Anschluss	Rohrgewinde				
Drehzahl	3000 1/min (viskositätsabhängig)				
Drehrichtung	Rechts oder links				
Einbaulage	100 Beliebig107 Waagerecht212 Beliebig				
Abmessungen	Seiten 8 10				
Gewicht	2,2 kg				

I Hydraulische Kenngrößen

Fördervolumen in cm ³ /U		0,5 · 0,8 · 1,0 · 1,6 · 2,0 · 2,5 · 3,0 · 4,0				
Betriebsdruck Saugseite	min max	-0,4 bar (-0,6 bar kurzfristig für Anfahrzustand) 2 bar				
Betriebsdruck Druckseite	max	120 bar (abhängig vom Medium, Fördervolumen und von der Viskosität)				
Umgebungstemperatur		-20 60°C				
Medientemperatur	max	NBR 90 °C FKM 150 °C PTFE 200 °C				
Viskosität		10 20.000 mm ² /s				

I Verfügbare Pumpenausführungen

Sondernummer	100 (Standard)	107	212
Verfügbare Größen	0,5 · 0,8 · 1,0 · 1,6 · 2,0 · 2,5 · 3,0 · 4,0	0,5 · 0,8 · 1,0 · 1,6 · 2,0 · 2,5 · 3,0 · 4,0	0,5 · 1,0 · 2,0 · 4,0
Gehäusematerial	EN-GJL-250	EN-GJL-250	EN-GJS-600 nitrocarburiert
Flanschdeckelmaterial	EN-GJL-250	EN-GJL-250	EN-GJS-600 tenifernitriert
Lagerung	Lagerbuchse	Lagerbuchse	Lagerbuchse
Lagermaterial	Stahl ETG 100 chemisch vernickelt mit SiC-Einlagerungen	Stahl ETG 100 chemisch vernickelt mit SiC-Einlagerungen	Stahl ETG 100 chemisch vernickelt mit SiC-Einlagerungen
Getriebematerial	Stahl 1.7139 chemisch vernickelt mit SiC-Einlagerungen	Stahl 1.7139 chemisch vernickelt mit SiC-Einlagerungen	Werkzeugstahl nitriert
Wellenabdichtung	Radialwellendichtring	Doppel-Radialwellendichtring	Doppel-Radialwellendichtring
Dichtringmaterial	NBR, FKM, PTFE	NBR, FKM, PTFE	NBR, FEP
Buntmetallfrei	ja	ja	ja

I Maximal zulässiger Betriebsdruck in Abhängigkeit von der Viskosität

	10 mm ² /s	30 mm ² /s	100 mm²/s	> 500 mm ² /s				
Nenngröße	Zul. Betriebsdruck in bar							
0,5	10	30	50	60				
0,8	15	40	60	70				
1,0	15	40	60	70				
1,6	20	60	80	100				
2,0	20	60	80	100				
2,5	30	60	100	120				
3,0	30	60	100	120				
4,0	40	80	120	120				

Die Werte sind gültig für den Drehzahlbereich 1000 ... 3000 1/min. Für Drehzahlen < 1000 1/min sind die max. Betriebsdrücke zu reduzieren.

Förderstrom und erforderliche Antriebsleistung

I Drehzahl = 1450 1/min, Viskosität = 34 mm²/s

			Druck	in bar				Nenn-								
5	10	20	40	60	80	100	120	größe	5	10	20	40	60	80	100	120
0,7	0,6	0,5	-	-	-	-	-	0,5	0,06	0,07	0,09	-	-	-	-	-
1,1	1,1	1,0	0,8	-	-	-	-	0,8	0,06	0,08	0,11	0,17	-	-	1	-
1,4	1,3	1,3	1,1	-	-	-	-	1,0	0,07	0,08	0,12	0,19	-	-	-	-
2,2	2,2	2,0	1,8	1,5	-	-	-	1,6	0,08	0,12	0,18	0,31	0,45	-	-	-
2,8	2,7	2,6	2,3	2,0	-	-	-	2,0	0,09	0,13	0,20	0,35	0,50	-	-	-
3,5	3,4	3,3	3,0	2,7	-	-	-	2,5	0,09	0,14	0,22	0,39	0,55	-	-	-
4,2	4,2	4,0	3,7	3,5	-	-	-	3,0	0,10	0,15	0,24	0,42	0,60	-	-	-
5,6	5,5	5,4	5,0	4,7	4,3	-	-	4,0	0,12	0,17	0,29	0,53	0,76	0,99	-	-

Förderstrom in I/min

Erforderliche Antriebsleistung in kW

I Drehzahl n = 1450 1/min, Viskosität = 120 mm²/s

			Druck	in bar				Nenn-	n- Druck in bar							
5	10	20	40	60	80	100	120	größe	5	10	20	40	60	80	100	120
0,7	0,7	0,6	0,5	-	-	-	-	0,5	0,06	0,07	0,09	0,12	-	-	-	-
1,1	1,1	1,1	1,0	0,9	-	-	-	0,8	0,06	0,08	0,10	0,16	0,21	-	-	-
1,4	1,4	1,4	1,3	1,2	-	-	-	1,0	0,08	0,09	0,12	0,17	0,23	-	-	-
2,3	2,2	2,2	2,1	2,0	1,8	-	-	1,6	0,08	0,11	0,16	0,27	0,38	0,50	-	-
2,8	2,8	2,8	2,7	2,6	2,5	-	-	2,0	0,09	0,12	0,20	0,34	0,49	0,64	-	-
3,5	3,5	3,4	3,3	3,2	3,0	2,9	-	2,5	0,09	0,14	0,22	0,38	0,55	0,71	0,88	-
4,2	4,2	4,2	4,1	3,9	3,8	3,7	-	3,0	0,10	0,15	0,24	0,43	0,61	0,80	0,98	-
5,7	5,6	5,6	5,5	5,3	5,2	5,0	4,9	4,0	0,12	0,17	0,29	0,53	0,76	0,99	1,23	1,46

Förderstrom in I/min

Erforderliche Antriebsleistung in kW

Typenschlüssel

1 Produkt

0,5 · 0,8 · 1,0 · 1,6 · 2,0 · 2,5 · 3,0 · 4,0

3 Befestigung

Flansch

4 Drehrichtung

1	Rechts
2	Links

5 Vorsatzflansch

U	Onne Winkelfuld
F	Winkelfuß (auf Anfrage)

6 Anschlussart

K Rohrgewinde

POA | Wellenende zylindrisch / ohne 2. Wellenende / Abschlussdeckel

ODL Konstruktionsziffer / Gehäusewerkstoff GG / Getriebeausführung geradverzahnt

9 Dichtung

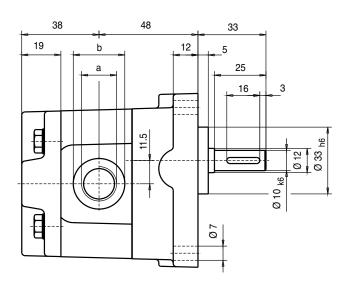
1	INRK
_	

2	FKN

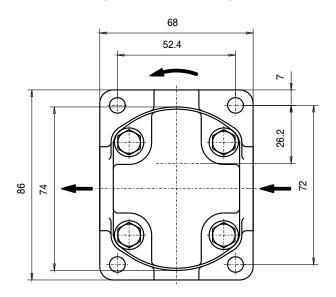
PTFE 32

10 Sondernummer

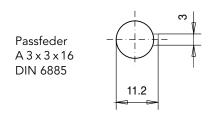
100	Radialwellendichtring	(Standard)


Mit Doppel-Radialwellendichtring, Anschluss Flüssigkeitsvorlage oben und unten

212 Mit Doppel-Radialwellendichtring, Anschluss Flüssigkeitsvorlage oben

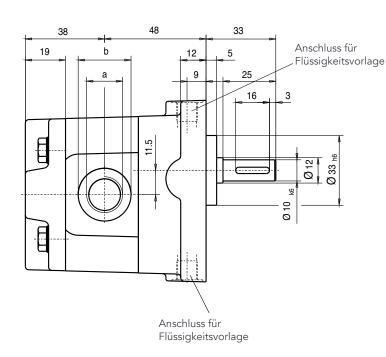


Abmessungen

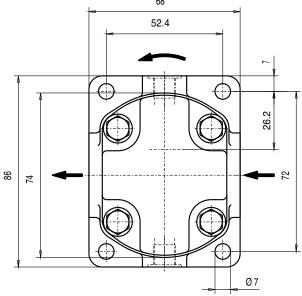

I Sondernummer 100 (Standard)

dargestellte Drehrichtung: rechts

Saug- und Druckanschluss sind maßlich gleich

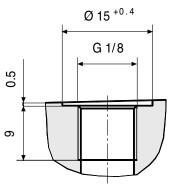


		Nenngröße										
	0,5	0,8	1,0	1,6	2,0	2,5	3,0	4,0				
а	G 3/8 – 13 tief G 1/2 – 15 tief					tief						
b		25		29								



Abmessungen

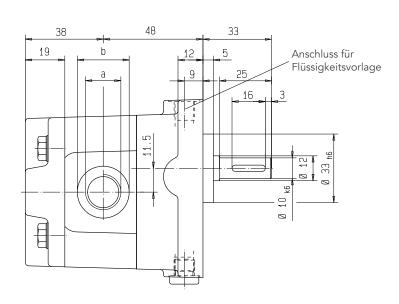
I Sondernummer 107


dargestellte Drehrichtung: rechts 68 52.4

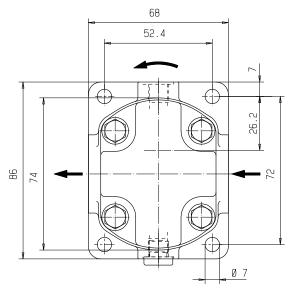
Einbaulage: waagerecht

Saug- und Druckanschluss sind maßlich gleich

Anschluss für Flüssigkeitsvorlage

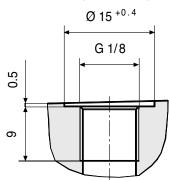

Passfeder A 3 x 3 x 16 DIN 6885		e
	11.2	

		Nenngröße										
	0,5	0,8	1,0	1,6	4,0							
а	G 3	3/8 – 13	tief	G 1/2 – 15 tief								
b	25 29											

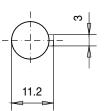


Abmessungen

I Sondernummer 212

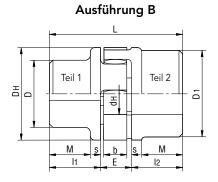


dargestellte Drehrichtung: rechts


Saug- und Druckanschluss sind maßlich gleich

	Nenngröße								
	0,5	1,0	2,0 4,0						
а	G 3/8 -	- 13 tief	G 1/2 – 15 tief						
b	2	5	29						

Passfeder A 3 x 3 x 16 DIN 6885



Kupplungen

I Technische Daten

Ausführung A Teil 1 Teil 1 Teil 1 Teil 1 Teil 1

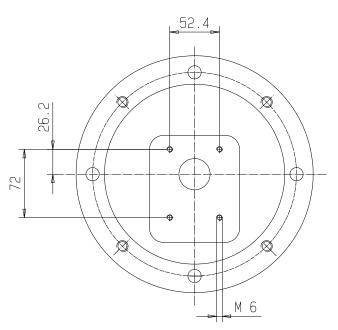
	Bestellbezeichnung	Kupplungs-	Nabenwe	rkstoff (Al)		Fertigb	ohrung	3	Abmessungen									
		größe	Gewicht Massentr.		m	min. max.												
			in kg	in kgm ²	Teil 1	Teil 2	Teil 1	Teil 2	l1/l2	Е	s	b	L	М	D _H	D	D ₁	d _H
f. A	RA 14-Z 11/Z 11/	14	0,045	0,000006	6	-	16	-	11	13	1,5	10	35	-	30	30	-	10
Ausf.	RA 19-Z 25/Z 25/	19	0,117	0,000023	6	-	19	-	25	16	2,0	12	66	20	41	32	-	18
f. B	RA 19/24-Z 25/Z 25/	19/24	0,129	0,000033	6	19	19	24	25	16	2,0	12	66	20	41	32	41	18
Ausf.	RA 24/28-Z 30/Z 30/	24/28	0,290	0,000140	9	24	22	28	30	18	2,0	14	78	24	56	40	56	27

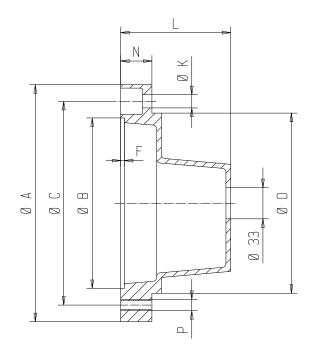
I Bestellbeispiel

RA	19	_ z	25/10	_	Z	25/14
Kupplungstyp	Kupplungsgröße	Pumpenseitig zylindrische Bohrung	Kupplungsnabenlänge / Nabenbohrung		Motorseitig zylindrische Bohrung	Kupplungsnabenlänge / Nabenbohrung

Betriebstemperatur: -20 ... 80 °C (kurzzeitige Temperaturspitzen bis 120 °C sind zulässig)

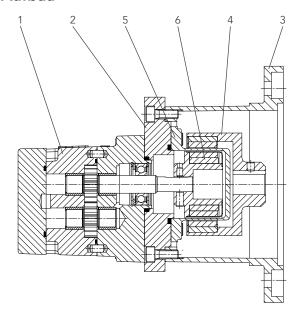
Gewichte und Massenträgheitsmomente beziehen sich auf max. Fertigbohrung ohne Nut.


Fertigbohrungen nach ISO-Passung H7


Passfedernuten nach DIN 6885 Bl. 1

Pumpenträger aus Aluminium

I Technische Daten



N/a+a-da	B	Kumaluma				Abr	nessun	gen				Gewicht
Motorbaugröße	Pumpenträger	Kupplung	Α	В	С	D	F	K	L	N	Р	in kg
63	Z0/140/70	RA14-Z11/10-Z11/11	140	95	115	95	4	9	70	17	M8	0,360
71 S	70/4/0/00	DA 40 705 40 705 44	4.0	440	400	440			00	4.0		0.400
71	Z0/160/80	RA19-Z25/10-Z25/14	160	110	130	110	4	9	80	13	M8	0,490
80 S	70,1000,100	DA 40 705 40 705 40	000	400	4.5	4.45	_	4.4	00	4.		0 (00
80	Z0/200/90	RA19-Z25/10-Z25/19	200	130	165	145	5	11	90	16	M10	0,600
90 S	70 /000 /400	DAAG (04 705 (40 705 (04	000	400	4.5	4.45		4.4	400	0.7		4 0 4 5
90 L	Z0/200/100	RA19/24-Z25/10-Z25/24	200	130	165	145	4	11	100	27	M10	1,345
100 LS												
100 L	Z0/250/116	RA24/28-Z30/10-Z30/28	RA24/28-Z30/10-Z30/28 250 180 215		190	4	14	116	33	M12	1,400	
112 M]											

Allgemeines - KF 0 mit Magnetkupplung

Aufbau

- 1 Pumpe
- 2 Adapterstück
- 3 Pumpenträger
- 4 Außenrotor
- 5 Spalttopf
- 6 Innenrotor

I Beschreibung

Bei verschiedenen Anwendungen stoßen konventionelle Dichtungen an ihre Grenzen. Typische Anwendungen sind in Polyurethananlagen, Kältemaschinen und Vakuumanlagen zu finden. Für diese Anwendungen besteht die Möglichkeit die KF 0 mit einer Magnetkupplung auszurüsten.

Die Magnetkupplung dient als Wellendichtung und zur Übertragung des Drehmoments. Der Außenrotor der Magnetkupplung ist auf der Motorwelle und der Innenrotor direkt auf der Pumpenwelle angebracht. Das Drehmoment wird durch die Magnetkräfte zwischen Außen- und Innenrotor übertragen. Zwischen den beiden Rotoren befindet sich der Spalttopf, der die Pumpe hermetisch abdichtet.

Die Magnetkupplung wird eingesetzt, wenn absolute Dichtheit zwischen Pumpenraum und Atmosphäre gefordert ist, wie z. B. bei der Dosierung von Isocyanat, wo der Kontakt mit Luft zum ungewollten Aushärten des Mediums führen würde. Sie kann im Vakuumbetrieb – z. B. beim Abfüllen von Bremsflüssigkeit – eingesetzt werden, wodurch ein Eindringen von Luft ins System zuverlässig verhindert wird. Auch beim Betrieb in geschlossenen Systemen mit hohem Vordruck auf der Pumpensaugseite wird ein leckagefreier Betrieb sichergestellt.

Prädestiniert ist die Magnetkupplung beim Dosieren von gefährlichen und gesundheitsgefährdenden Medien.

Technische Daten

I Allgemeine Kenngrößen

Befestigungsart	Flansch
Hydraulischer Anschluss	Rohrgewinde
Drehzahl	3000 1/min (viskositätsabhängig)
Drehrichtung	Rechts oder links
Einbaulage	Beliebig

I Hydraulische Kenngrößen

Fördervolumen in	cm ³ /U	0,5 · 0,8 · 1,0 · 1,6 · 2,0 · 2,5 · 3,0 · 4,0				
Betriebsdruck Saug	gseite					
Betrieb	min max	-0,4 bar (Vakuumanlage -0,92 bar) 16 bar (SS1)				
Stillstand min max		-1 bar 16 bar (SS1)				
Betriebsdruck Drud	ckseite max	25 bar (SS1)				
Umgebungstempe	eratur	-20 60 °C				
Medientemperatur		-10 150 °C				
Viskosität		10 20.000 mm ² /s				
	_					

Werkstoffe

Pumpe	
Gehäuse	GG 25, DIN 1691
Getriebe	Stahl 1.7139 chemisch vernickelt mit SiC-Einlagerungen
Lagerbuchsen	Stahl ETG 100 chemisch vernickelt mit SiC-Einlagerungen
Dichtungen	FKM
Magnathunnlung	
Magnetkupplung	
Innenrotor	Edelstahl 1.4571
Spalttopf	Edelstahl 1.4571
Außenrotor	355J2F3 (St 52)
Magnete	Sm2Co17

Technische Daten

Nennmomente Magnetkupplung MSA 46 3 Nm MSA 60 7 Nm MSB 60 14 Nm

Auswahlhilfe

Pumpe	Kupplungs- größe	Zul. Leistung in kW bei 750 min ⁻¹	Motor- baugröße	Zul. Leistung in kW bei 1000 min ⁻¹	Motor- baugröße	Zul. Leistung in kW bei 1500 min ⁻¹	Motor- baugröße	Zul. Leistung in kW bei 3000 min ⁻¹	Motor- baugröße
		0,12	71	0,18	71	0,12	63	0,25	63
	MSA 46	-	-	-	-	0,18	63	0,37	71
		-	-	-	-	0,25	71	0,55	71
KF 0		0,18	80	0,25	71	0,37	71	0,75	80
	MSA 60	0,25	80	0,37	80	0,55	80	1,10	80
		0,37	90	0,55	80	0,75	80	1,50	90
	MSB 60	0,55	90	0,75	90	1,10	90	2,20	90

Die in der Tabelle angegebenen Werte beziehen sich auf eine maximale Medientemperatur von 80 °C. Bei Medientemperaturen >80 °C sind gegebenenfalls stärkere Magnetkupplungen auszuwählen.

Zur Auslegung einer Magnetkupplung müssen folgende Angaben vorliegen:

- Pumpengröße
- Pumpendruck (Betriebs- und Anfahrdruck)
- Betriebs- und Anfahrviskosität
- Genaue Medienbezeichnung, erforderliche statische Dichtungen (wenn möglich), evtl. wichtige Medieneigenschaften
- Leistung des Antriebsmotors
- Drehzahl bzw. Drehzahlbereich
- Einschaltart (direkt oder mit Frequenzumrichter)
- Medien- und Umgebungstemperatur

Typenschlüssel

1 Produkt

2 Nenngröße

0,5 · 0,8 · 1,0 · 1,6 · 2,0 · 2,5 · 3,0 · 4,0

3 Befestigung

S Flansch

4 Drehrichtung

1 rechts2 links

5 Vorsatzflansch

ohne WinkelfußWinkelfuß (auf Anfrage)

6 Anschlussart

K Rohrgewinde

7

P0A Wellenende zylindrisch, ohne 2. Wellenende, Abschlussdeckel

0DL

Konstruktionsziffer, Gehäusewerkstoff GG, Getriebeausführung geradverzahnt

9 Dichtung

2 FKM

10 Sondernummer

235 Ausführung Magnetkupplung ohne Spülung244 Ausführung Magnetkupplung mit Spülung

11 Magnetkupplungsgröße

MSA 46 Siehe Seite 15

MSA 60 Siehe Seite 15 MSB 60 Siehe Seite 15

12 Max. Temperatur der Magnetkupplung

A 150 °C **B** 300 °C

13 Max. zulässiger Druck im Spalttopf

1 16 bar
 3 40 bar

14 Motorflansch

160 Aussendurchmesser in mm

Notizen

Notizen

Notizen

KRACHT GmbH \cdot Gewerbestraße 20 \cdot 58791 Werdohl, Germany Phone +49 2392 935 0 \cdot E-Mail info@kracht.eu \cdot Web www.kracht.eu