

Coriolis-Massendurchflussmesser CMM

Inhalt

Funktion / Anwendungen	4
Technische Daten	5 – 6
Allgemeine Kenngrößen	6
Typenschlüssel	7
Abmessungen	8
Anwendungsbeispiele	9

Beschreibung

Ansicht – Coriolis-Massendurchflussmesser und Signalprozessoren

I Funktion CMM

Der Coriolis-Massendurchflussmesser CMM beruht auf dem Schwingkörpermessverfahren, welches sich den Effekt der Coriolis-Kraft zunutze macht. Der durch Einlass des Durchflussmessers eintretende Massestrom wird durch einen Strömungsteiler in das parallel und symmetrisch gebogene Doppelrohr verteilt. Das Messmedium vereint sich nach Durchströmen des Messzweiges im Messkörper erneut und verlässt den Massendurchflussmesser über den Auslass.

Das symmetrisch ausgestaltete Messrohrpaar wird durch die aufmontierte elektromagnetische Antriebseinheit mit der jeweiligen Resonanzfrequenz kontinuierlich und symmetrisch in Vibration versetzt. Auf den Messrohren werden ebenso zwei Sensoren zur Messung der Symmetrie der Schwingungen installiert. Bei Strömungsfreiheit ist das von den beiden Schwingungsfühlerpaaren abgegebene elektrische Signal ein in Phase und Amplitude gleiches Sinussignal. Fließt durch die Rohre ein Massestrom, so verspätet sich in Folge der durch die Schwingung auftretenden Coriolis-Kraftwirkung auf die Messrohre das Sinussignal des Sensorpaares der einen Seite vom Sinussignal des anderen Fühlerpaares in der Phase. Diese Zeitverschiebung ist dem Massenstrom direkt proportional.

Mit den Signalprozessoren C-MASS-021 oder C-MASS-021-D werden die Signale des CMM aufgenommen und verarbeitet.

I Anwendungen

- Messung von hochviskosen Flüssigkeiten (kein Einfluss der Viskosität)
- Messung von aggressiven Flüssigkeiten
- Messung und Regelung der Konzentration in der Qualitätskontrolle und im Mischprozess

Als Ausgangssignale stehen Frequenz, Stromausgang oder serielle Schnittstelle zur Verfügung. Für den Betrieb in explosionsgefährdeten Bereichen sind zwei ATEX-Versionen verfügbar:

1. Verwendung des Signalprozessors C-MASS-21 in einem normalen Gehäuse.

In diesem Fall muss eine Zener-Barrier Unit (ZBU) zwischen dem CMM und dem C-MASS-021 Signalprozessor montiert werden. Die ZBU und der C-MASS-021 müssen sich im sicheren Bereich befinden. Der Sicherheitsgrad dieses Messkreises:

Ex II (2)G [Ex ib]

nach den Standards ATEX 94/9EC; MSZ EN 60079-0:2012; MSZ EN 60079-0:2013

2. Verwendung des Signalprozessors C-MASS-021-D im Ex-d-Gehäuse.

In diesem Fall können sich der Signalprozessor C-MASS-021-D und der CMM im explosionsgefährdeten Bereich befinden, da die Zener-Barrier Unit (ZBU) in das Ex-d-Gehäuse der Signalprozessoreinheit eingebaut ist. Der Sicherheitsgrad dieses Messkreises

Ex II (2)G Ex d [ib] IIB T6

nach den Standards ATEX 94/9EC; MSZ EN 60079-0:2013; MSZ EN 60079-1:2008; MSZ EN 60079-11:2012

- Messung des eichpflichtigen Massentransfers von Flüssiggasen (LPG, LNG)
- Messung von Komponenten in Mischungen basierend auf Massen-, Dichte- und Temperaturmessung (normalisiertes Volumen von reinem Ethylalkohol, API-Normalvolumen, Öl-Wasser-Gehalt)

Technische Daten

I Allgemeine Kenngrößen CMM

Nenngrößen

0,15 · 0,5 · 1 · 3 · 6 · 14 · 40 · 80 · 160 · 300 (die Größen geben den maximalen Massendurchfluss in t/h an)

Anschlussart

Flanschanschluss (Sonderanschlüsse auf Anfrage)

Durchflussrichtung

Bidirektional (die positive Richtung ist auf dem Gehäuse des Sensors angegeben)

Zertifizierte Messgenauigkeit

siehe Seite 5, 6

Rohranschluss

Maximaldruck

Umgebungstemperatur

Medientemperatur

siehe Tabelle Seite 8

-40 ... 60 °C

-40 ... 200 °C

Werkostoff

Edelstahl (1.4404; 1.4541; 1.4301) Hastelloy

Gewicht

Gewicht

Nenngröße	kg
0,15	8,5
0,5	6,8
1	7,5
3	11,0
6	14,0
14	18,0
40	35 – 48
80	85 – 112
160	120 – 155
300	145 – 250

I Druckverlust bei max. Durchflussmenge (Wasser bei 20 °C)

Nenngröße	bar
0,15	2
0,5	1,9
1	1,7
3	1,5
6	1,9
14	1,0
40	1,3
80	0,9
160	1,8
300	2,1

Bei anderen Flüssigkeiten als Wasser kann der zu erwartende Druckverlust berechnet werden, wenn man die Viskosität und Dichte der zu messenden Flüssigkeit kennt. Für die Berechnungen ist die Hilfe des Herstellers in Anspruch zu nehmen (info@kracht.eu)

Massenmessung

		Messbereiche CMM (MF _{min} MF _{max}) für zertifizierte Genauigkeitsklassen								
	0,15	0,50	1,0	3,0	6,0	14,0	40,0	80,0	160,0	300,0
MF _{max} kg/h für alle Genauigkeitsklassen	150	500	1000	3000	6000	14 000	40 000	80 000	160 000	300 000
MF _{min} kg/h Genauigkeitsklasse: 0,3 %	11,6	38,5	77,0	231	462	1 078	3 080	6 160	12 320	23 100
MF _{min} kg/h Genauigkeitsklasse: 0,5 %	6,3	21,0	42,0	126	252	587	1 678	3 357	6 713	12 587
MF _{min} kg/h Genauigkeitsklasse: 1,0 %	3,0	10,1	20,2	61	121	283	810	1 619	3 239	6 072
Minimale messbare Masse: MMQ _M kg	0,2	0,5	1	2,5	5	13	35	60	90	120

Technische Daten

Dichtemessung

Temperaturbereich	-40 200 °C
Dichtebereich	400 1300 kg/m³

СММ	Genauigkeit der Dichtemessung (kg/m³)
0.15	± 5
0.50	± 2
1.00	± 2
3.00	± 1
6.00	± 1
14.0 300	± 0.8

I Temperaturmessung

Medientemperaturbereich	Temperaturtoleranz
-40 200 °C	± 1 °C

Hinweis:

Bei der Installation in explosionsgefährdeten Bereichen wird die Obergrenze der Flüssigkeits- und Umgebungstemperatur durch die Temperaturklasse der Ex-Schutzart bestimmt.

I Allgemeine Kenngrößen Signalprozessoren – C-MASS-021 / C-MASS-021-D

Typenauswahl	C-MASS-021 - Signalprozessor im normalen Gehäuse C-MASS-021-D - Signalprozessor und Zener-Barrier im Ex-d-Gehäuse
Ausgangssignale	Frequenz (max. 10 kHz) Strom (max. 20 mA) Warnsignal Serielle Schnittstelle RS 232 oder RS 485/422 mit MODBUS RTU
Umgebungstemperatur	-20 55 °C
Stromversorgung	18 30 VDC
Schutzart	IP 65
Luftfeuchtigkeit	30 70 % (ohne Kondensation)

Typenschlüssel

Beispiel

1 Produkt

2 Nenngröße									
0,15	0,5	1	3	6	14	40	80	160	300

i	3 Rohranschluss				
Γ	EN	ANSI	R	E	X
	EN Flansche	ANSI Flansche	NPT	ERMETO	Sonderanschluss

4 Werkstoff	
S	Х
Edelstahl	Sonderwerkstoff

5 Medientempera
NT
−40 200 °C

6 Druckstuf	e (bar)								
010	016	025	040	063	100	160	250	320	

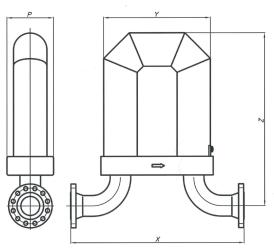
7 Elektrischer Anschluss				
Н	J			
Hirschmann	Klemmenkasten			

8 ATEX			
N	EX		
Nein	mit Zener-		
	Barrier		

Abmessungen

Nenngröße	Х	Υ	Z	Z	Р	Rohranschluss (W)		max. Druck
						Gewinde	Flansch	bar
0,15	siehe Zeichnung unten					NPT ½"	DN 15	250
0.5	346	280	310	300	102	NPT ½"	DN 15	250
1	406	320	357	300	102	NPT ½"	DN 15	320
3	470	384	382	280	102	NPT ½"	DN 15	250
6	470	384	387	250	128	NPT ½"	DN 15	220
14	590	426	704	230	160	NPT 1"	DN 25	160
40	670	500	750	150	150	NPT 1 ½"	DN 40/50	160
80	1040	700	1072	100	189	-	DN 80/100	160
160	1185	860	1090	40	280	-	DN 100/150	160
300	1260	920	1350	10	364	-	DN 100/150	160

CMM 0,5 ... 80

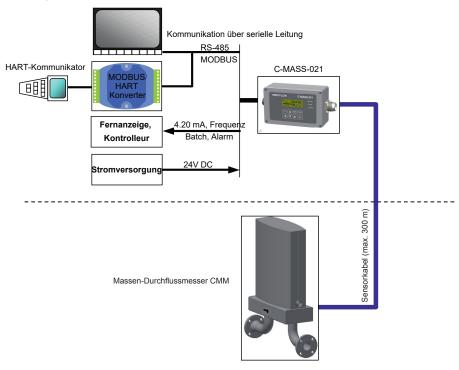

Erdungsschraube (M6) 23

CMM 160 ... 300

CMM 0,15

Ø114,3

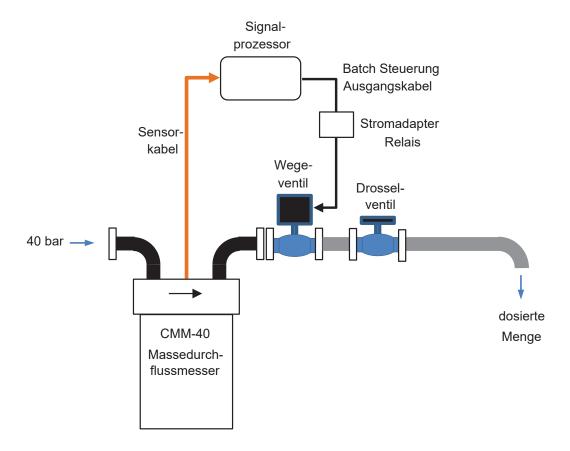
214



Anwendungsbeispiele

Messsysteme

I Messsystem A



I Anwendungsbeispiele

Dosieranlage

Notizen

KRACHT GmbH \cdot Gewerbestraße 20 \cdot 58791 Werdohl, Germany Phone +49 2392 935 0 \cdot E-Mail info@kracht.eu \cdot Web www.kracht.eu